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We perform orbital-free molecular dynamics simulations in the hot and dense regime for two mixtures:
equimolar helium-iron and asymmetric deuterium-copper plasmas. For thermodynamic properties, we test two
isobaric-isothermal mixing rules whose definitions involve either the equality of total pressures or the equality
of the so-defined excess pressures of the components; the pressure and internal energy obtained by direct
simulations are in very good agreement with those given by the mixing rule involving the equality of excess
pressures. The viscosity of the deuterium-copper mixture is also extracted from a direct simulation and com-
pared to the result given by a mixing rule applied to the viscosities of the pure elements. Finally, for structural
properties, the effective charges given by the isobaric-isothermal mixing rule for the average atom model, used
in the binary ionic mixture model, yield partial pair distribution functions in good agreement with those
obtained by a direct simulation.
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I. INTRODUCTION

Mixtures are often encountered in both astrophysical plas-
mas and inertial confinement fusion �ICF� plasmas. Their
properties are of prime importance for “scientific” as well as
“technological” issues. For example, the equation of state
�EOS� gives an insight into the possibility of phase separa-
tion which remains an open question for hydrogen and he-
lium inside giant planets �1–3�. The transport coefficients of
mixtures are also particularly relevant for hydrodynamic
simulations in ICF; for example, viscosity governs the
growth of hydrodynamic instabilities �4�. This quantity has
been recently studied for an asymmetric mixture of deute-
rium and gold in the framework of the binary ionic mixture
�BIM� �5� where ions interact by a pure Coulombic potential.
Unfortunately, this model relies on knowledge of the effec-
tive charges of the components of the mixture, quantities that
have to be determined by an ad hoc prescription.

Contrary to this parametrized model, first-principles simu-
lations, like quantum molecular dynamics, allow one to di-
rectly deal with mixtures without any ad hoc prescription.
Such simulations turned out to account for experimental
EOS and optical properties of diluted aluminum and gold
plasmas �6�. Yet the quantum description of electrons be-
comes numerically intractable as temperature or density in-
creases. Indeed, as temperature grows, the number of elec-
tronic quantum states to be taken into account is colossal due
to the Fermi-Dirac distribution of electrons. In order to ad-
dress the high-temperature regime, we proposed an alterna-
tive scheme in which electrons were no longer described by
orbitals, as in quantum molecular dynamics, but by a free-
energy functional depending only on the local electronic den-
sity. This approach, orbital-free molecular dynamics
�OFMD�, has been found valid at high density for boron �7�
and can be used to deal with hot and dense plasmas of high-
atomic-number elements �8–10�. For hydrodynamics, it is of
practical interest to find mixing rules allowing one to predict

the properties of a mixture from the properties of its pure
components. Mixing rules for the equation of state have been
studied in the framework of specific models like the BIM
and its extension to Yukawa-type plasmas �11–14�. In the
present paper, we test the mixing rules in the hot and dense
regime thanks to direct simulations of the mixture by
OFMD; we consider the equation of state as well as the
viscosity and the partial pair distribution functions.

The paper is organized as follows. Theoretical and nu-
merical aspects of OFMD are explained in Sec. II. The
isobaric-isothermal mixing rules are defined in Sec. III. They
are tested for the calculation of pressure and internal energy,
in Sec. IV, on an equimolar helium-iron mixture and, in Sec.
V, on an asymmetric deuterium-copper mixture. In the latter
case, the isobaric-isothermal mixing rules are used to calcu-
late viscosity. Furthermore, the isobaric-isothermal mixing
rule for the average atom model �15�, used with the BIM
model, gives good partial pair distribution functions. The
OFMD simulations are performed with the electronic struc-
ture package ABINIT �16�. Atomic units are used throughout
the paper if not indicated otherwise.

II. ORBITAL-FREE MOLECULAR DYNAMICS

Most ab initio techniques are based on coupling finite-
temperature density-functional theory �DFT� �17,18� for the
electrons and molecular dynamics for the nuclei by using the
Born-Oppenheimer approximation. In these methods, the dy-
namics of the N nuclei located at Ri, of mass Mi and atomic
number Zi, is driven by both electronic and nuclear Coulomb
interactions and is represented by the following Lagrangian:

L�n�r�,�Ri�,�Ṙi�� =
1

2�
i=1

N

MiṘi
2 −

1

2 �
i,j=1

i�j

N
ZiZj

�Ri − R j�

− Fe�n�r�,�Ri�� , �1�

where Fe�n�r� , �Ri�� stands for the electronic free energy that
depends only on the local electronic density n�r� in the DFT
formalism.*Corresponding author: luc.kazandjian@cea.fr
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In quantum molecular dynamics, the electrons are de-
scribed, in the framework of DFT, by an independent-particle
model which leads to the well-known Kohn-Sham equations
�19�. In contrast to the Kohn-Sham method, the orbital-free
approach used here directly deals with the free energy as a
functional of the electronic density without introducing the
one-electron Kohn-Sham orbitals. The orbital-free free en-
ergy �20� is then

Fe�n� =
1

�
	 dr
n�r���n�r�� −

2�2

3�2�3/2 I3/2���n�r����
+	 dr V�r�n�r� +

1

2
	 	 dr dr�

n�r�n�r��
�r − r��

+ Fxc�n� ,

�2�

where � is the inverse of the temperature, I� is the Fermi
function of order �, V�r� is the external potential—i.e., the
ionic Coulombic potential or a regularized potential—and
Fxc�n� is the exchange-correlation term chosen to be the
local-density approximation of Perdew and Zunger �21�. The
screened potential ��n�r�� is related to the electronic density
n�r� through

n�r� =
�2

�2�3/2 I1/2���n�r��� . �3�

If exchange-correlation is neglected, Fe�n� in Eq. �2� is noth-
ing but the Thomas-Fermi functional at finite temperature.
We emphasize again that the nuclei are characterized only by
their atomic number Zi and their mass Mi so that pure ele-
ments and mixtures are treated on an equal footing.

At each time step, for given Ri’s, the free energy is mini-
mized with respect to the local electronic density under the
constraint of charge neutrality of the mixture. The forces
acting on the nuclei are then computed from the electronic
density and the nuclei are moved in the isokinetic ensemble
�22,23� �other statistical ensembles, like the microcanonical
one, could be used, but the isokinetic ensemble allows one to
regard temperature as exactly known�. In practice, the
nucleus-electron interactions are regularized potentials in-
stead of the bare Coulombic potential �8�; they are no longer
Coulombic below a given cutoff radius �one for each type of
nucleus�. Convergence studies must ensure that the resulting
quantities do not depend, within about one standard devia-
tion, on the regularization. The choice of the cutoff radii and
of the other simulation parameters is explained in Appendix
A.

III. ISOBARIC-ISOTHERMAL MIXING RULES

A mixing rule for an equation of state allows one to cal-
culate the equation of state of a mixture from the equation of
state of its components �and the mole fractions�. An isobaric-
isothermal mixing rule has been defined in the framework of
the average atom model �15�, but has not been verified so far.
We define similar mixing rules, designated by MR1 and
MR2, to calculate the excess pressure Pex and the excess
internal energy per atom, Eex, of a mixture at density � and
temperature T. These quantities are defined as follows:

Pex = P − nIkT , �4�

Eex = E −
3

2
kT , �5�

where P and E are the total pressure and the internal energy
per atom, k is the Boltzmann constant, and nI is the number
of nuclei per unit volume.

In our definition of MR1, the partial densities �� related to
component � are determined by the following two equations:
�i� equality of the excess pressures of the pure components �
at their respective partial densities and at temperature T,

Pex,����,T� = Pex,m��m,T�, ∀ �,m , �6�

and �ii� additivity of partial volumes,

1

�
�

�

x�A� = �
�

x�

A�

��

, �7�

where A� and x� are the atomic mass and the mole fraction of
component �.

It is implicitly supposed that there is a one-to-one rela-
tionship between density and pressure in Eq. �6� so that Eqs.
�6� and �7� have a unique solution. Once the ��’s are known,
the excess pressure is taken equal to the Pex,�’s of Eq. �6� and
the excess internal energy per atom is taken equal to

Eex��,T,�x��� = �
�

x�Eex,����,T� , �8�

where Eex,���� ,T� is the excess internal energy per atom of
the pure component � at density �� and temperature T.

We define another mixing rule, designated by MR2, by
Eqs. �7� and �8� and by Eq. �9� which expresses the equality
of the total pressures of the pure components � at their re-
spective partial densities �� and at temperature T:

P����,T� = Pm��m,T�, ∀ �,m . �9�

Once the ��’s are determined by Eqs. �7� and �9�, the total
pressure of the mixture is taken equal to the P�’s of Eq. �9�
and the excess internal energy is calculated with Eq. �8�.
Choosing either excess or total pressures to define the
isobaric-isothermal mixing rule relies on two different quali-
tative interpretations:

�i� On the one hand, one can consider a complete mixing
of the two elements. In that case, each element “exchanges”
electrons with the other one, a kind of chemical reaction, and
the thermodynamic potential that is equalized between the
two species is the chemical potential �24�. Since in the aver-
age atom framework the chemical potential determines the
pressure, equality of the chemical potential leads to equality
of the “electronic pressure” which is chosen to be the excess
pressure in OFMD.

�ii� On the other hand, one can consider droplets of each
species interacting with each other by “exchanging” volumes
so that the thermodynamic potential equalized is the total
pressure �25�.

It can be shown that, given the additivity of partial vol-
umes and the equality of either excess or total pressures,
the values of the pressure and internal energy of the mixture
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can be obtained by expressing either the excess or total free
energy as a weighted sum; this point is discussed in Appen-
dix B.

IV. APPLICATION TO AN EQUIMOLAR MIXTURE
OF HELIUM AND IRON

We now use OFMD, either alone or in association with
MR1 or MR2, to compute the pressure and internal energy
of an equimolar mixture of 4He �atomic mass A
=4.0026 g mol−1� and 56Fe �A=55.935 g mol−1�. In Fig. 1,
we have plotted a graphical scheme that illustrates the algo-
rithm of Eqs. �6� and �7�, for instance. In each direct simu-
lation of the mixture, 30 particles �15 of each component� are
propagated during 2000 time steps; for pure He or pure Fe
involved in applying MR1 or MR2, 32 particles are propa-
gated during 2000 time steps. The other numerical param-

eters are chosen as indicated in Appendix A. The variation of
excess pressure with temperature at 1 g cm−3 and
10 g cm−3, obtained with direct simulation or MR1 or MR2,
is shown in Table I and in Figs. 2 and 3. In the thermody-
namic domain covered, the electrons go from degenerate to
classical. The pressures given by MR1 are in excellent agree-
ment with those given by a direct simulation, the maximum
relative error being less than 1% and less than twice the
relative standard deviation. With MR2, the agreement is gen-
erally less good and all the less so as the kinetic pressure due
to nuclei is a large part of the total pressure �15% at 5 eV and
10 g cm−3, 1% at 500 eV and 10 g cm−3, 46% at 5 eV and
1 g cm−3, 8% at 500 eV and 1 g cm−3�.

As in the case of pure elements, because of the regular-
ization of the nucleus-electron interaction necessary for
OFMD, the internal energy is not properly computed and
must be corrected with the help of the average atom model
�10�. We propose to calculate the exact excess internal en-
ergy per atom, Eex�� ,T , �x���, obtained with a Coulombic
nucleus-electron interaction, through
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FIG. 1. Isobaric-isothermal mixing rule MR1 applied to an
equimolar mixture of 4He and 56Fe at 10 g cm−3 and 5 eV. Dots
represent OFMD simulations for each pure element, and solid lines
are linear fits. Partial densities, given by the dashed lines, result
from Eqs. �6� and �7�. The position of the horizontal dashed line is
determined by the rule of additivity of partial volumes. Vertical bars
represent standard deviations.

TABLE I. Excess pressure for an equimolar mixture of 4He and 56Fe. Pex
s designates the results given by

direct simulations; Pex
MR1 and Pex

MR2 designate the results given by the mixing rules MR1 and MR2 used with
OFMD. The numbers in parentheses are standard deviations.

� T Pex
s Pex

MR1 Pex
MR2

�g cm−3� �eV� �Mbar�

1 5 0.1854 �6�10−4� 0.1854 �5�10−4� 0.1918 �6�10−4�
1 500 183.97 �2�10−2� 183.85 �2�10−2� 182.58 �2�10−2�
10 2 6.88 �2�10−2� 6.82 �2�10−2� 6.88 �1�10−2�
10 5 8.88 �2�10−2� 8.83 �2�10−2� 8.95 �2�10−2�
10 10 13.11 �3�10−2� 13.07 �3�10−2� 13.27 �2�10−2�
10 20 24.21 �4�10−2� 24.00 �4�10−2� 24.40 �3�10−2�
10 50 70.48 �9�10−2� 70.73 �6�10−2� 71.10 �4�10−2�
10 100 178.51 �6�10−2� 178.21 �8�10−2� 178.60 �6�10−2�
10 200 466.56 �9�10−2� 465.93 �2�10−1� 465.35 �2�10−1�
10 500 1611.60 �3�10−1� 1611.10 �5�10−1� 1607.48 �3�10−1�
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FIG. 2. Equimolar He-Fe mixture. Comparison of the excess
pressures given by direct simulations �Pex� and by the mixing rule
MR1 �Pex

MR1�. Vertical bars represent relative standard deviations.
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Eex��,T,�x��� = Eex
ps��,T,�x���

+ �EAA��,T,�x��� − EAA
ps ��,T,�x���� ,

�10�

where Eex
ps�� ,T , �x��� is the excess internal energy per atom

given by the OFMD simulation for the regularized interac-
tions considered �ps stands for pseudopotential� and
EAA�� ,T , �x��� and EAA

ps �� ,T , �x��� are the internal energies
per atom computed, with the average atom model and the
isobaric-isothermal mixing rule �15�, for the Coulombic in-
teraction and for the regularized interactions considered.

We have observed that, as the cutoff radii are lowered, the
right-hand side of Eq. �10� eventually becomes constant
within one standard deviation. We conjecture that this prop-
erty extends up to very small values of the cutoff radii for
which the right-hand side of Eq. �10� tends to the excess
internal energy sought. We therefore use Eq. �10�, imple-
mented with sufficiently small cutoff radii, to compute the

excess internal energy per atom with OFMD. The results are
shown in Table II where the excess internal energies given
by MR1 and MR2 are compared to those given by direct
simulations. Agreement between direct simulations and MR1
is very good. With MR2, the agreement is generally less
good; MR2 gives results which become more different from
the exact ones as temperature gets higher. This difference in
the internal energies given by MR1 and MR2 stems from the
difference in the partial densities obtained with each method.
At low temperature, MR1 and MR2 give close results be-
cause the internal energy varies little with density; it is no
longer the case at high temperature. It can be noted that, at
high temperature, direct simulations give excess internal en-
ergies close to those of the average atom model; this fact
confirms the interest of MR1 and of the mixing rule for the
average atom model �15�.

V. APPLICATION TO AN ASYMMETRIC MIXTURE:
DEUTERIUM AND COPPER IN ICF CONDITIONS

In the previous section, OFMD has been applied to the
computation of pressure and internal energy. These quantities
are rather “easy” to calculate since their convergence with
respect to the number of particles and to the number of time
steps is fast. In this section, besides pressure and internal
energy, we also calculate structural properties and viscosity.
We consider a mixture of deuterium �A=2.0140 g mol−1�
and copper �63Cu, A=62.930 g mol−1�, with respective mo-
lar fractions xD=0.9 and xCu=0.1, at 50 g cm−3 and 100 eV.
This mixture is inspired by the “double-shell” design of the
target in ICF �26� in which, during the compression phase,
the mixing of light and heavy elements can occur because of
Rayleigh-Taylor instabilities �26�.

In order to get a good statistics on our results, especially
pair distribution functions and viscosity, we perform a simu-
lation of the aforementioned mixture with 500 particles, 450
atoms of deuterium and 50 atoms of copper, propagated dur-
ing 47 000 time steps �or 0.5 ps�. This large number of time
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FIG. 3. Equimolar He-Fe mixture. Comparison of the excess
pressures given by direct simulations �Pex� and by the mixing rule
MR2 �Pex

MR2�. Vertical bars represent relative standard deviations.

TABLE II. Excess internal energies per atom for an equimolar mixture of 4He and 56Fe. Eex
s designates

the results given by direct simulations; Eex
MR1 and Eex

MR2 designate the results given by the mixing rules MR1
and MR2 used with OFMD. All excess internal energies are corrected with Eq. �10�. The numbers in
parentheses are standard deviations.

� T Eex
s Eex

MR1 Eex
MR2

�g cm−3� �eV� �keV/atom�

1 5 −21.406 �1�10−5� −21.406 �1�10−5� −21.405 �1�10−5�
1 500 −6.586 �1�10−3� −6.590 �1�10−3� −6.639 �8�10−4�
10 2 −21.409 �4�10−5� −21.409 �4�10−5� −21.410 �2�10−5�
10 5 −21.401 �4�10−5� −21.401 �4�10−5� −21.401 �4�10−5�
10 10 −21.377 �6�10−5� −21.378 �5�10−5� −21.378 �6�10−5�
10 20 −21.308 �7�10−5� −21.309 �8�10−5� −21.309 �6�10−5�
10 50 −20.981 �9�10−5� −20.981 �1�10−4� −20.983 �1�10−4�
10 100 −20.188 �2�10−4� −20.190 �2�10−4� −20.197 �2�10−4�
10 200 −18.076 �3�10−4� −18.075 �4�10−4� −18.100 �4�10−4�
10 500 −10.117 �3�10−3� −10.123 �1�10−3� −10.183 �9�10−4�
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steps is necessary because of the different behaviors of deu-
terium and copper: respectively, kinetic and coupled. We
have had to take a smaller time step than the one deduced
from Appendix A to reach convergence; apart from the time
step, the other numerical parameters are chosen as indicated
in Appendix A.

A. Pressure and internal energy

As in Sec. IV, the mixing rules MR1 and MR2, used with
OFMD, are applied to the computation of pressure and ex-
cess internal energy and compared to direct OFMD simula-
tions. The results are indicated in Table III. The excess pres-
sures given by MR1 and MR2 differ from the excess
pressure given by a direct simulation by 1% and 2.5%, re-
spectively; though large in terms of standard deviation, the
agreement is good. Excess internal energies agree within a
few standard deviations. It can be noted that the same pres-
sures and excess internal energies are obtained �within one
standard deviation� with only 45 atoms of deuterium and 5
atoms of copper.

B. Partial ionization and structural properties

OFMD allows one to test prescriptions imposed on the
parameters that govern classical models like the one-
component plasma �OCP�. A comparison of OFMD with the
OCP �27� has already been conducted on structural and dy-
namic properties of iron and gold �8,9�. We carry on with this
study by comparing OFMD and the BIM �5� applied to the
mixture considered. Like the OCP, the BIM is a parametrized
theory that relies on knowledge of effective charges. Usually,
the BIM is expressed in terms of effective parameters like
the coupling constant. We have chosen to express these ef-
fective parameters with the ionizations Z� provided by the
average atom model �and not by OFMD� and the isobaric-
isothermal mixing rule �15�; Z� is defined as the product of
the electronic density at the surface of atom j �at T and at the
partial density � j� by the volume of atom j. We have found
Z�=0.89 for deuterium and Z�=11.2 for copper.

The parameters of the BIM simulation—i.e., number of
particles, time step, and number of time steps—are chosen
identical to those of OFMD. We perform a simulation of 450
deuterium ions and 50 copper ions with their respective ef-
fective charges, the interaction being in that case purely Cou-
lombic. Ions are propagated during 47 000 time steps in the
isokinetic ensemble. The resulting partial pair distribution
functions �PDFs� are plotted in Fig. 4. These partial PDFs
show the different behaviors of the components, kinetic for

deuterium and coupled for copper. The D-D and D-Cu PDFs
computed with the BIM are in remarkable agreement with
the OFMD simulation. The Cu-Cu PDF obtained with the
BIM is slightly more structured than that obtained with
OFMD. Yet one must remember that the simulation contains
50 atoms of copper only, which limits the statistical accuracy
of our result. Despite this slight difference, our choice of
ionizations seems to describe the structural properties cor-
rectly.

C. Viscosity

Among transport coefficients used in hydrodynamics, vis-
cosity plays an important role since it governs the develop-
ment of hydrodynamic instabilities. The viscosity � can be
computed from the autocorrelation of the off-diagonal ele-
ments of the microscopic stress tensor,

� =
�

V
	

0

+	

��t�dt , �11�

��t� =
1

3 �
i,j

i
j

�ij�t��ij�0�� , �12�

where V is the volume, the �ij’s are the off-diagonal terms of
the microscopic stress tensor �28�, and ¯� denotes the av-

TABLE III. Comparison of the mixing rules MR1 and MR2, used with OFMD, with a direct simulation
of the D-Cu mixture for excess pressure and excess internal energy.

MR1 MR2 Simulation

�D �g cm−3� 26.2 20.3

�Cu �g cm−3� 67.4 85.8

Pex �Mbar� 1326.4 �1.0� 1373.1 �1.0� 1340.0 �1.5�
Eex �keV/atom� −5.1988 �3�10−4� −5.2003 �3�10−4� −5.1962 �3�10−4�
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FIG. 4. Partial pair distribution functions of D and Cu in the
mixture. Circles represent OFMD results, and lines represent BIM
results.
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erage in the statistical ensemble considered. The microscopic
stress tensor �which has units of energy� is computed for
both electronic and nuclear parts �29� with due care to the
fact that the kinetic-entropic part of the electronic functional
has no contribution to the off-diagonal terms because of the
local-density approximation �9�.

Since only one value is available at each time step, vis-
cosity is a particularly difficult quantity to compute �5,30� in
comparison with diffusion coefficients that are averaged over
the particles. This is the reason why we have chosen such a
long run for the simulation. The function ��t� is plotted in
Fig. 5. The time integration in Eq. �11� is carried out on
successive 2000-step intervals; the values obtained on each
interval are used to calculate the average value and the stan-
dard deviation of the viscosity. The statistically noisy part of
��t� is replaced by an exponential fit, as already proposed in
Ref. �31� for dense matter. We have finally obtained a vis-
cosity �=0.12 Pa s with a standard deviation of 0.025 Pa s.

1. Mixing rule for viscosity

We have computed with OFMD the viscosity of each pure
component at the densities provided by the mixing rules
MR1 and MR2 �used with OFMD�. Results are summarized
in Table IV. The volume fraction of component � is defined,
with the notations of Sec. III, by

v� =
�

��

x�A�

��
x�A�

. �13�

In the thermodynamic state considered, the viscosity of pure
deuterium is driven by kinetic effects whereas the viscosity
of copper, because of the coupling, is driven by both poten-
tial and kinetic effects; this fact explains the relatively low
viscosity of copper. Qualitatively, by comparing the viscosity
of the mixture with that of the pure elements, it is obvious
that deuterium dominates the behavior of the plasma. Quan-
titatively, it is interesting to test the validity of a mixing rule
for viscosity that is inspired by an effective medium theory
and that has already been used in the BIM framework �5�.

This rule relates the mixture viscosity �m to the pure-element
viscosities �� and volume fractions v� through

�
�

v�

�� − �m

�� + 3
2�m

= 0. �14�

By choosing in Eq. �14� the volume fractions and viscosities
at the densities provided by the mixing rules MR1 and MR2
�Table IV�, we obtain a mixture viscosity of 0.11 and 0.16
Pa s, respectively, in reasonable agreement with the direct
OFMD simulation. It is worth noting that, because of the
domination of deuterium, a “simple” mixing rule like serial
association �m=vD�D+vCu�Cu leads to viscosities of, respec-
tively, 0.15 and 0.18 Pa s, which are also fairly close to the
OFMD results.

2. What is the information obtained from the direct simulation?

Although statistical uncertainties limit verification of rule
�14�, it is important to understand that its result relies on
knowledge of the volume fractions and pure-element viscosi-
ties. Those are obtained through thermodynamic mixing
rules so that the adequacy between direct-simulation viscos-
ity and Eq. �14� is largely influenced by the EOS mixing
rule. For ideal gases, there exists another EOS mixing rule
which is referred to, inappropriately, as the “partial density”
mixing rule. Species are assumed not to interact so that v�

=1 and

�� = �
x�A�

��
x�A�

. �15�

With this mixing rule, partial densities are always less than
the total density and entirely independent of temperature.
This mixing rule applied to our D-Cu mixture gives partial
densities �D=11.1 g cm−3 and �Cu=38.9 g cm−3. At these
partial densities, the viscosities are �D=0.24 Pa s and �Cu
=0.03 Pa s, and the mixture viscosity obtained with Eq. �14�
is 0.09 Pa s; the mixture viscosity obtained with MR1 and
Eq. �14�i.e., 0.11 Pa s—is in better agreement with the direct
simulation. By providing not only pressure but also volume
fractions, the mixing rule MR1 �used with OFMD�, along
with Eq. �14�, gives a reliable result for viscosity in the hot
and dense domain.
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FIG. 5. ��t� from the OFMD simulation.

TABLE IV. Viscosities ��MR1 and �MR2� of pure D and pure Cu
at T=100 eV and at the material densities provided by the mixing
rules MR1 and MR2 used with OFMD. Partial densities ��MR1 and
�MR2� and volume fractions �vMR1 and vMR2� are also indicated.

D Cu

�MR1 �g cm−3� 26.2 67.4

�MR2 �g cm−3� 20.3 85.8

vMR1 0.424 0.576

vMR2 0.551 0.449

�MR1 �Pa s� 0.30 0.042

�MR2 �Pa s� 0.28 0.067
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VI. CONCLUSION

We have applied OFMD to an equimolar mixture of 4He
and 56Fe and to an asymmetric mixture of D and 63Cu in the
hot and dense regime. We have found that the possibility of
computing internal energy with OFMD through Eq. �10�, al-
ready verified for a pure plasma �10�, also holds for mixtures.
The isobaric-isothermal mixing rules MR1 and MR2 have
turned out to be relevant to calculate pressure and internal
energy in the thermodynamic conditions considered; MR1
has also provided parameters allowing the computation of
viscosity with Eq. �14�. For the computation of pressure and
internal energy, the isobaric-isothermal mixing rule dealing
with excess pressures �MR1� has given better results than the
isobaric-isothermal mixing rule dealing with total pressures
�MR2�. The two rules yield pressures which become more
different as the kinetic pressure due to nuclei becomes a
larger part of the total pressure; they yield internal energies
which get more different as internal energies depend more on
density. Besides, the effective charges given by the isobaric-
isothermal mixing rule for the average atom model �15�,
used in the BIM model, have yielded partial pair distribution
functions in good agreement with those given by a direct
OFMD simulation. Knowing the effective charges inside the
mixture and the validity of the BIM opens new possibilities
for the computation of transport coefficients through the fits
that exist for the OCP �5,32�. To our knowledge, this work is
the first verification of mixing rules in the hot and dense
regime in the framework of OFMD as well as the first direct
computation of a mixture viscosity without any ad hoc pre-
scription like partial ionizations.
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APPENDIX A: COMPUTATIONAL DETAILS

OFMD requires numerical parameters which must be cho-
sen by looking for numerical convergence, within one stan-
dard deviation, of the quantity computed. In OFMD, elec-
tronic density is expressed as an expansion on a periodic
plane-wave basis; the cutoff energy ecut determines the num-
ber of plane waves. In order to make this expansion possible,
the nucleus-electron interactions are taken as regularized po-
tentials instead of the bare Coulombic potential �8�; these
regularized potentials are no longer Coulombic below a
given cutoff radius �one for each type of atom�. Besides the
cutoff energy and the cutoff radii, the main numerical param-
eters of OFMD are the time step �t used to displace nuclei,
the number Ntime of time steps, and the number N of atoms in
the basic reference cell �infinitely replicated�. We choose
Ntime and N by a systematic search for numerical conver-
gence of pressure and internal energy. As in the case of a
pure element �10�, we have been able to find simple rules

allowing a fast determination of the other parameters; these
rules are given below.

1. Cutoff radius

It has been shown that, for a plasma with a single type of
atom at temperature T and density �, a suitable cutoff radius
for the computation of pressure and internal energy can be
determined from the potential energy of a fcc lattice structure
�10�. In the case of a mixture, if rcut,j designates the cutoff
radius characterizing the interaction between an electron and
a nucleus of type j, we have found that a suitable value of
rcut,j is the value of the cutoff radius for a pure plasma with
nuclei of type j at temperature T and partial density � j.

2. Cutoff energy

Let ecut,j be defined for each partial density � j and tem-
perature T by the smallest cutoff energy such that

�Pfcc,j�ecut,j + 20�
Pfcc,j�ecut,j + 10�

− 1�  5 � 10−5 �A1�

and

�Pfcc,j�2ecut,j + 40�
Pfcc,j�ecut,j + 20�

− 1�  10−4, �A2�

where Pfcc,j�ecut,j� is the pressure calculated with DFT when
the nuclei, of type j only, are motionless and located on an
fcc lattice structure and when the cutoff energy is ecut,j. A
suitable value of ecut for the computation of pressure and
internal energy of a mixture is the largest of the ecut,j’s.

3. Time step

We now turn to the choice of the time step. We define �t0
as an adequate time step for the computation of pressure and
internal energy obtained, once and for all, for an OFMD
simulation at �0 and T0 of a pure element of atomic mass A0.
If Aj is the atomic mass of the element j, the time step �tj for
a simulation of a pure plasma of j at temperature T and
density � j is given by the scaling law

�tj = 
T0

T
�1/2
 Aj

A0
�5/6
�0

� j
�1/3

�t0. �A3�

This scaling law is a direct application of a work of Bernu
and Vieillefosse on the one-component plasma �33�. It can
also be obtained by a rationale similar to that of Ref. �10�
dealing with the choice of time step. In the case of a mixture,
a suitable value of �t for the computation of pressure and
internal energy is then

�t = �
j

xj�tj , �A4�

where xj is the mole fraction of j and �tj is calculated with
Eq. �A3� and the partial density � j �given by the mixing rule
considered�.

APPENDIX B: ANOTHER PRESENTATION
OF THE MIXING RULES MR1 AND MR2

Let us consider the mixing rule MR2, for instance. It pos-
tulates that, once Eqs. �7� and �9� have been solved for the
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partial densities ��, the total pressure of the mixture is equal
to the common value of Eq. �9� and the excess internal en-
ergy per atom is expressed by Eq. �8�. In this appendix, we
show that we could have obtained the same result by simply
postulating, in addition to Eqs. �7� and �9�,

F��,T,�x��� = �
�

x�F����,T� , �B1�

where, as in the rest of this appendix, the notations of Sec. III
are used, and F designates the free energy per atom.

Given the free energy per atom, F�� ,T , �x���, of the mix-
ture, its pressure P is

P =
�2

��
x�A�


 �F

��
�

T,�x��
. �B2�

With Eq. �B1�, Eq. �B2� gives

P =
�2

��
x�A�

�
�

x�
 �F�

���
�

T

 ���

��
�

T,�x��
. �B3�

The pressures P�’s can be expressed with the free energy per
atom F� of component � as

P����,T� =
��

2

A�

 �F�

���
�

T

. �B4�

Differentiating Eq. �7� with respect to � at given T and �x��
yields

�
�

x�A�

�2 = �
�

x�A�

��
2 
 ���

��
�

T,�x��
. �B5�

Using Eqs. �9�, �B4�, and �B5� in Eq. �B3�, we obtain

P = P����,T� , �B6�

which is the result postulated in the text for the pressure
obtained with MR2.

We now consider the internal energy. The entropy per
atom of the mixture is

S��,T,�x��� = − 
 �F

�T
�

�,�x��
�B7�

or, with Eq. �B1�,

S��,T,�x��� = − �
�

x�
 �F�

�T
�

��

− �
�

x�
 �F�

���
�

T

 ���

�T
�

�,�x��
.

�B8�

Differentiating Eq. �7� with respect to T at given � and x�

gives

�
�

x�A�

��
2 
 ���

�T
�

�,�x��
= 0. �B9�

Using Eq. �9�, �B4�, and �B9� in Eq. �B8�, we obtain the
entropy per atom of the mixture S�� ,T , �x���,

S��,T,�x��� = �
�

x�S����,T� , �B10�

S����,T� = − 
 �F�

�T
�

��

. �B11�

With Eqs. �B1� and �B10�, the internal energy per atom,
E�� ,T , �x���, is equal to

E��,T,�x��� = �
�

x�E����,T� . �B12�

Since every nucleus has the same kinetic energy, Eq. �B12�
also gives

Eex��,T,�x��� = �
�

x�Eex,����,T� , �B13�

which is the result postulated in the text for the excess inter-
nal energy per atom obtained with MR2.

It can be shown similarly that MR1 can be deduced from
Eqs. �6� and �7� and the equality

Fex��,T,�x��� = �
�

x�Fex,����,T� , �B14�

where Fex designates the so-defined excess free energy—i.e.,
the free energy minus the free energy of the ideal gas in the
conditions considered.
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